Learning control algorithms for tracking "slowly" varying trajectories

نویسندگان

  • Samer S. Saab
  • William G. Vogt
  • Marlin H. Mickle
چکیده

To date, most of the available results in learning control have been utilized in applications where a robot is required to execute the same motion over and over again, with a certain periodicity. This is due to the requirement that all learning algorithms assume that a desired output is given a priori over the time duration t in [0,T]. For applications where the desired outputs are assumed to change "slowly", we present a D-type, PD-type, and PID-type learning algorithms. At each iteration we assume that the system outputs and desired trajectories are contaminated with measurement noise, the system state contains disturbances, and errors are present during reinitialization. These algorithms are shown to be robust and convergent under certain conditions. In theory, the uniform convergence of learning algorithms is achieved as the number of iterations tends to infinity. However, in practice we desire to stop the process after a minimum number of iterations such that the trajectory errors are less than a desired tolerance bound. We present a methodology which is devoted to alleviate the difficulty of determining a priori the controller parameters such that the speed of convergence is improved. In particular, for systems with the property that the product matrix of the input and output coupling matrices, CB, is not full rank. Numerical examples are given to illustrate the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

Prediction-based Iterative Learning Control (PILC) for Uncertain Dynamic Nonlinear Systems Using System Identification Technique

Prediction-based Iterative Learning Control (PILC) is proposed in this paper for a class of time varying nonlinear uncertain systems. Convergence of PILC is analyzed and the uniform boundedness of tracking error is obtained in the presence of uncertainty and disturbances. It is shown that the learning algorithm not only guarantees the robustness, but also improves the learning rate despite the ...

متن کامل

Position Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison

In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...

متن کامل

Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope

Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 1997